
Thank this author by sharing: 22

BLOG

2011/12/05

FORUM

2013/03/25

ARTICLE

2013/03/29

FORUM

2010/10/09

FORUM

2012/04/17

Log in :: Register :: Not logged in

Home

Tags

Articles

Editorials

Stairways

Forums

Scripts

Videos

Blogs

QotD

Books

Ask SSC

SQL Jobs

Training

Authors

About us

Contact us

Newsletters

Write for us

Daily SQL Articles

by email:

Improve your SQL Server knowledge daily with more

articles by email.

 Rate this Join
the discussion Add to briefcase

Database Design Follies: NULL vs.
NOT NULL
By Edward Pollack, 2016/02/26 (first published: 2014/10/30)

Introduction

When designing a new database, one of the first decisions we

make it to define our columns. This process involves data types,

constraints, indexes, keys, and to ensure that our definition

accurately reflects the data that the column represents. Deciding if

a column should be NULL or NOT NULL will be an important piece

of this work, and sometimes far more contentious than we’d expect

of a decision that has only 2 possible results!

Background

In the world of SQL, NULL occupies a special place. It is not a

value, nor is it a state such as true or false, but it’s an absence of

any known value. NULL is used explicitly to indicate when a value is

unknown, undefined, does not, or cannot exist.

This has some big implications for the future of our fledgling

database. Since NULL isn’t a value like 17 or ‘Purple’, it doesn’t

behave the same way when used in arithmetic, string manipulation,

aggregation, or conditionals. What exactly does 42 + NULL equal?

How about ‘Customer revenue was ’ + NULL?

The short answer is NULL, the longer answer is to never allow that

situation to arise in the first place because it’s as confusing as

dividing by zero. In fact, it’s worse as division by zero will typically

throw an error, whereas multiplying by NULL will trickle through your

SQL into the application and only cause trouble when NULL is no

longer a viable result.

NULL may now sound like a bad idea---but in fact it has many

excellent uses. We do run into many scenarios where an account

doesn’t have a contract, a work order has yet to be assigned a

complete date, or you don’t have a favorite color and elected to not

fill in the optional field on the web site.

There are DBAs that vigilantly contend that all columns should be

NOT NULL, whereas others will allow NULL wherever they can.

This is not a debate that is worth the space here, but instead we’ll

look at the pros and cons of NULL-able columns, when they are

best used, and some common mistakes. Getting these decisions

right when you first design new tables will save immense trouble

down the road. Changing this after years of SQL and code have

been built on top of it could easily be an exercise in tedium (at

best), or implementing cheap hacks (at worst).

For the remainder of this article, we’ll use the following simple

example to illustrate NULL usage:

CREATE TABLE Accounts

(

Related Articles

Column alias in order by and
where

If you ever wonder why column alias can
be used in order by and not in where
clause, it’s the...

Alter column order

Alter column order

Column Order in an Index

This short article shows the importance of
order of columns in an index.

Columns order in the inde

Columns order in the index

Using column alias in my where
filter

Using column alias in my where filter

Tags
database design

not null

null

Stay up to date:

Daily newsletters with brand new

articles, scripts, editorials and a

Question of the Day help you keep

on top of SQL Server.

No thanks

Database Design Follies: NULL vs. NOT NULL - SQLServerCentral http://www.sqlservercentral.com/articles/NULL/116167/

1 di 7 29/02/2016 09.54

 AccountID INT IDENTITY(1,1) NOT NULL

 AccountName VARCHAR(100) NOT NULL,

 Address_1 VARCHAR(50) NOT NULL,

 Address_2 VARCHAR(50) NULL, -- Optional second line

 City VARCHAR(35) NOT NULL,

 StateOrTerritory VARCHAR(25) NOT NULL

 Country VARCHAR(25) NOT NULL,

 ContractID INT NULL, -- FK to Contracts, if one exis

 CurrencySymbol VARCHAR(1) NOT NULL,

 AccountIcon VARCHAR(50) NOT NULLCONSTRAINT DF_Accoun

-- The name of the icon that will display with the a

CONSTRAINT PK_Accounts PRIMARY KEY CLUSTERED

A final note: All information provided here will assume that

ANSI_NULLS is ON. Additional information will be provided for

select cases when ANSI_NULLS is OFF, as needed. Microsoft

has deprecated ANSI_NULLs and in a future version of SQL

Server will make ON the required default for this setting. At that

time, any SQL that sets ANSI_NULLS OFF will generate an

error. As you write new code, be sure to take this into account

and not rely on the old OFF setting for this SET statement. In

addition, SET ANSI_NULLS OFF does not follow the ISO

standard, which means that SQL written with this setting will

behave unreliably in other SQL systems.

Guidelines

The first key to using NULLs is to define what NULL means for any

given column. This should be included in your design

documentation so that DBAs and developers that refer to your table

in the future will have no trouble understanding what a column

means, what sort of data it represents, and what a NULL means, if

allowed.

OPTIONAL OR REQUIRED?

The first and easiest criteria to determine if a column should be

NULL or not is if it is optional. In the web form for your application,

what fields will throw errors back at the user if they choose to leave

them blank? What data is necessary to properly define an entity?

These can always be NOT NULL columns as the application will

guarantee a value. In addition, the NOT NULL ensures that anyone

manually manipulating data in the table cannot inadvertently place a

NULL in this column and break your application. In the above

example, Address_2 allows NULL values because many people

don’t have a second line to their address and would want to leave

the field blank. Optional foreign keys, such as ContractID should

also be NULL, as an account with no contract cannot populate that

column with any meaningful data.

On the other hand, AccountName and Address_1 are NOT NULL

as they would be required by any application that uses this table.

They should never be undefined and if we were to allow NULLs in

these columns, we would be forced to ask many questions. Is this

data useful? Will it break the application? How is it possible for a

customer to not have a name? The answers to these questions

would quickly lead us to determine that there should not and cannot

be NULL values in these columns.

DATA THAT IS CREATED IN THE FUTURE

Some columns contain data that is always known. For example,

your country will always exist from the moment an account is

created until the moment it is deleted. There is never any point in

time in which we cannot or do not know the country in which an

account is located. If we one day have an account located on the

moon, we’d simply populate Country with something new to indicate

its lunar location. Other times, we need to store values that are not

present initially in our newly inserted rows, but will be (or may be)

populated later. Resolutions, completion dates, status messages,

Stay up to date:

Daily newsletters with brand new

articles, scripts, editorials and a

Question of the Day help you keep

on top of SQL Server.

No thanks

Database Design Follies: NULL vs. NOT NULL - SQLServerCentral http://www.sqlservercentral.com/articles/NULL/116167/

2 di 7 29/02/2016 09.54

and so on are all examples of columns that will likely start off NULL,

but eventually be given a value as time goes on.

NORMALIZATION

It is possible to remove most instances of NULL columns through

further normalization. Data that has to do with optional keys,

completion dates, or status/error messages can be offloaded to

separate tables and keyed back to the parent table. For example,

we can remove the Address_2 column into another table with any

other optional descriptive elements and foreign key them back to

the Accounts table. This would allow us to only populate rows in

the new table if and when we had an account with an Address_2,

but we would then also need to support a new table as well as

some constraint to ensure that an account can only ever have a

single Address_2, and that one-to-many relationships are not

allowed.

Is this worth it? I tend to look at tables as reflections of an object,

and when we query the table, we are looking to return some set of

data describing that object. If we always need to check for a status

message or completion data, then we are forcing extra joins and

existence checks into our business logic to support the separated

parts of our object. If the additional columns are only needed on

special occasions, or make up a separate aspect of an account,

then a separate table may be sensible.

SELF-DOCUMENTATION

Good tables are (practically) self-documenting. The column

names, data types, foreign key relationships, and other elements of

their structure will tell you what they mean, how they are joined, and

how to effectively use them to retrieve the data you’re looking for.

The rationale behind a column’s nullability should be self-evident. If

we need to frequently ask what a NULL means, why a column can

allow NULLs, why a column doesn’t allow NULLs, or what a blank,

-1, or other dummy value means, then we need to review our table

and ask if we didn’t goof while designing it. If the documentation

doesn’t affirm the structure of a table, then that disconnect may be

a reason for investigating potential changes to either.

Oftentimes the best indicator of bad database design is the

frequent workarounds that are silently constructed to prevent any

fundamental changes to our existing system. If we allow NULL in a

StatusID column, but then apply ISNULL(StatusID, 17) whenever

we use the column, it is worth asking if we shouldn’t have made the

column NOT NULL in the first place and forced a default from the

application or a default constraint. If we have a NOT NULL INT

column where we consistently populate -1 for unknown values, we

again should stop and ask why we are going through all of this extra

trouble.

There is no 100% right or wrong answer that fits all situations. The

answer lies in how a table will be queried against and the most

common use-cases for the columns that could be NULL.

NULL Behavior

NULL does not behave in the same way that standard values do.

Some behavior is expected and we tend to overlook, but other

results can break applications or provide erroneous data if not

accounted for.

ARITHMETIC

Any string manipulation, arithmetic, dynamic SQL building, or math

involving a NULL value will return a NULL.

SELECT 17 + 42 + 289 + NULL

This will return NULL.

DECLARE @CMD VARCHAR(MAX)

Stay up to date:

Daily newsletters with brand new

articles, scripts, editorials and a

Question of the Day help you keep

on top of SQL Server.

No thanks

Database Design Follies: NULL vs. NOT NULL - SQLServerCentral http://www.sqlservercentral.com/articles/NULL/116167/

3 di 7 29/02/2016 09.54

SELECT @CMD = 'This is a test of how NULL '

SELECT (@CMD)

This will also return NULL.

WHERE CLAUSE

Any WHERE clause that checks if column_name = NULL will return

no rows, such as in this example. Always use WHERE

column_name IS NOT NULL or WHERE column_name IS NULL

instead.

SELECT AccountID FROM dbo.Accounts WHERE ContractID

With ANSI_NULLS OFF, the WHERE clause will return NULL

rows using this syntax. WHERE column_name <> NULL will

return all non-null values.

AGGREGATION

Whenever an aggregation is used, such as SUM(), AVG(), MIN(),

MAX(), and so on, NULL values will be ignored. COUNT(*) will

return a count of all rows, even if one column contains NULL values,

but COUNT(column_name) will omit all NULL values from the count

result. GROUP BY will group NULL values, in addition to all other

values.

Common Mistakes

DUMMY DATA

What happens when you create a NOT NULL column and a

scenario arises where no value is entered? Consider this new

column in our Accounts table, which will contain the name of the

account rep:

ALTER TABLE Accounts ADD AccountRep VARCHAR

What if an account is created, but not assigned a rep yet? A

dangerous mistake is to create a dummy value and populate the

column with zero, blank, negative one, a default rep, or another

unexpected value that easily identifies this scenario. It sounds

reasonable, but is ultimately a technical burden, as you are forced

to remember what the dummy value is and what it means, which can

be difficult if this convention is used in multiple columns. In

addition, what if a user enters your dummy value inadvertently in the

web form? The result is a set of dummy data and user-entered

data that cannot be effectively distinguished from each other.

Common examples where a column should probably be NULL

instead of a dummy value include:

Social Security or National ID numbers for a non-resident.

000-00-0000 has no intrinsic meaning and doesn’t provide

additional information as to why that column doesn’t have a

valid ID number. 123-45-6789 is just as outlandish. For

scenarios like this, there must be a way to indicate that the

ID is inapplicable, either with NULL or some alternative flag

or ID that provides meaning to the given situation.

1.

End dates for ongoing tasks. 1/1/1900 is a terrible default

and ultimately leads to date math errors and absurd results.

1/1/2020 and other dates in the far future are even worse,

as we will one day hit those dates and be in big trouble when

our dummy data has actual meaning and is comingled with

dates entered by real people. If a date column is NOT

NULL, it is imperative that all values entered have real

meaning.

2.

Text fields that are displayed directly in the application. To

simplify populating all those fields and having to ISNULL()

another column, we use empty strings, blanks, dashes, or

other symbols as placeholders. It is a convenience for

3.

Stay up to date:

Daily newsletters with brand new

articles, scripts, editorials and a

Question of the Day help you keep

on top of SQL Server.

No thanks

Database Design Follies: NULL vs. NOT NULL - SQLServerCentral http://www.sqlservercentral.com/articles/NULL/116167/

4 di 7 29/02/2016 09.54

developers, but allows for potentially lazy programming and

unusual performance problems, depending on the size of

the columns and the defaults that are populated for them. A

database is not the optimal place to format text for display in

an application. There is a slippery slope where serving data

slides into serving formatted text, HTML, and other markup

that probably should be left to the web tier to handle.

NULL RESULTS

It is important to account for the possibility of NULL values before

you begin manipulating data. The moment you check a WHERE

clause against a potentially NULL variable, you risk getting

inaccurate results. The same goes for string concatenation,

arithmetic, building dynamic SQL, or date math. If a column can be

NULL, it’s important to take the NULL possibility into account---here

are some suggestions:

Use INNER JOIN, IF EXISTS, or WHERE clauses to filter

our NULL data if it isn’t needed.

1.

Use ISNULL or COALESCE (if needed) to clean up the data

you’re returning so that we don’t end up bombing future

results with NULL values.

2.

If lots of columns are being concatenated for frequent use

in a display string, consider creating a view to simplify

returning your data. This removes the need to track NULL

checks in stored procedures or in code. This can be a

handy tool for developers, but shouldn’t be overused as

views are additional objects that need to be maintained

alongside the rest of our schema.

3.

CONDITIONALS

When comparing multiple conditional statements, you can sidestep

NULL problems inadvertently and not realize until it’s too late that

you’ve left behind a ticking time bomb. Consider the following

SQL:

SELECT

 *

FROM dbo.Accounts

WHERE Address_2 = 'Apt. 5'

OR AccountName = 'Ed''s Cool Company'

This SQL will return any rows with the Address_2 account name

specified above. But, what happens if Address_2 is NULL? This

SQL will still work, but consider the following 2 queries:

SELECT

 *

FROM dbo.Accounts

WHERE Address_2 = 'Apt. 5'

SELECT

 *

FROM dbo.Accounts

WHERE Address_2 <> 'Apt. 5'

If Address_2 has a value, it will be returned by one of these

queries. If Address_2 is NULL, then it will not be returned by

either. If this was your intention, then you’re good to go---but---if

you intended for NULL values to be included in the second query,

then you’d need to add a second WHERE clause to catch the

NULL cases.

SELECT

 *

FROM dbo.Accounts

WHERE Address_2 <> 'Apt. 5' OR Accounts.Address_2

Stay up to date:

Daily newsletters with brand new

articles, scripts, editorials and a

Question of the Day help you keep

on top of SQL Server.

No thanks

Database Design Follies: NULL vs. NOT NULL - SQLServerCentral http://www.sqlservercentral.com/articles/NULL/116167/

5 di 7 29/02/2016 09.54

Queries that include NOT IN within the WHERE clause will exhibit

the exact same behavior when dealing with a column that contains

NULL values.

COUNTS

Unlike IDs, names, or other common metadata, a column that

tracks a count will likely never be NULL. A count represents an

absolute number of something, and in order to make sense needs

to be populated with some value.

For example, let’s say we have a column called

PendingOrderCount that tracks the number of orders a particular

account has pending. If an account has seven orders pending,

then for them, PendingOrderCount = 7. If an account has no

pending orders, then PendingOrderCount = 0. What if a customer

has never had an order before? Generally, we’d want to use

PendingOrderCount = 0 again since they have zero orders. If this

column is populated using a join to some orders table, though, it’s

possible to inadvertently end up with a NULL for the order count,

which will end up being both unexpected and undesirable.

While we could interpret NULL with special meaning in scenarios

like this---that is, NULL = no orders AND never has had an order

before, that would likely be confusing and hard to document. We

want our developers and DBAs to actually understand how to use

this data, and the necessity to document and train constantly so that

quirks like this make sense should be the hint that this is probably

not the best way to store a count.

As a result, counts generally should be NOT NULL columns where

“zero count” and “never had any” are both entered as zero. If there

is a need to report on the difference between those cases in the

database, then there is almost certainly a way to do so that doesn’t

require the use of additional columns. In the above example, we

could run an IF EXISTS against whatever table stores the order

history to quickly find out with certainty if an account has ever

placed any orders.

Performance

A common question that is often misquoted or answered incorrectly

is, “Does a column with a NULL perform the same way as a column

with an empty string?” Similarly, we can ask if a nullable column

performs differently, in general, than a non-nullable column.

For non-string columns, such as INT, DATETIME, or DECIMAL, a

non-NULL value has a built-in size to it. An INT column with zero

instead of NULL takes 4 bytes to store, rather than 0 bytes. This

much is obvious, and row sizes will increase as a result of these

changes, but those are expected changes. The query optimizer

knows the column is NOT NULL and how large it will be for all rows

in a fixed-length column.

For a variable-length column, such as a VARCHAR column, it gets

a bit tricky. NULL and empty string both take up the same space

(zero bytes), but are they treated identically by the query optimizer?

In general, yes---for 99.99% of queries you write, estimated row

size, and therefore CPU, memory usage, and disk IO will be the

same if you swap a NOT NULL ‘’ column with a NULL column of the

same data type.

It’s possible to mess with the optimizer by combining

VARCHAR(MAX) and complex queries with a variety of hash joins

and ORDER BY clauses. The result can be hash joins and

worktables with overly inflated sizes, resulting directly from

unusually large estimated row sizes when a NOT NULL empty

string column is used vs. a NULLable column with NULL values

entered instead. This isn’t the norm, though, and I mention it only

as a venue for troubleshooting in the event that a very complex

query involving a table such as this is resulting in performance

problems and heavy tempDB pressure.

Stay up to date:

Daily newsletters with brand new

articles, scripts, editorials and a

Question of the Day help you keep

on top of SQL Server.

No thanks

Database Design Follies: NULL vs. NOT NULL - SQLServerCentral http://www.sqlservercentral.com/articles/NULL/116167/

6 di 7 29/02/2016 09.54

Thank this author by sharing: 22

Beyond this edge case, performance shouldn’t be a concern in

deciding NULL vs. NOT NULL in a variable length string. It still

matters for other data types, where an empty string isn’t available

as zero-length filler.

Conclusion

A great deal can be said about what seems like such a simple

topic. NULL is special in the world of database design, and

understanding how it works and is used in the context of your data

will go a long way towards ensuring that you make the best

decisions possible. Those smart decisions early on will prove

valuable years later when all of the TSQL that has been written

based on them is intuitive, scalable, and easy to update.

Want more great articles like this? Sign up for fresh SQL

Server knowledge delivered daily.

 Rate this Join
the discussion Add to briefcase

Copyright © 2002-2016 Simple Talk Publishing. All Rights Reserved. Privacy Policy. Terms of Use.

Total article views: 15933 | Views in the last 30 days: 3762

Stay up to date:

Daily newsletters with brand new

articles, scripts, editorials and a

Question of the Day help you keep

on top of SQL Server.

No thanks

Database Design Follies: NULL vs. NOT NULL - SQLServerCentral http://www.sqlservercentral.com/articles/NULL/116167/

7 di 7 29/02/2016 09.54

